Recovering Edges in Ill-Posed Inverse Problems: Optimality of Curvelet Frames

نویسندگان

  • Emmanuel J. Candès
  • David L. Donoho
چکیده

We consider a model problem of recovering a function f(x1, x2) from noisy Radon data. The function f to be recovered is assumed smooth apart from a discontinuity along a C curve – i.e. an edge. We use the continuum white noise model, with noise level ǫ. Traditional linear methods for solving such inverse problems behave poorly in the presence of edges. Qualitatively, the reconstructions are blurred near the edges; quantitatively, they give in our model Mean Squared Errors (MSEs) that tend to zero with noise level ǫ only as O(ǫ) as ǫ → 0. A recent innovation – nonlinear shrinkage in the wavelet domain – visually improves edge sharpness and improves MSE convergence to O(ǫ). However, as we show here, this rate is not optimal. In fact, essentially optimal performance is obtained by deploying the recentlyintroduced tight frames of curvelets in this setting. Curvelets are smooth, highly anisotropic elements ideally suited for detecting and synthesizing curved edges. To deploy them in the Radon setting, we construct a curvelet-based biorthogonal decomposition of the Radon operator and build “curvelet shrinkage” estimators based on thresholding of the noisy curvelet coefficients. In effect, the estimator detects edges at certain locations and orientations in the Radon domain and automatically synthesizes edges at corresponding locations and directions in the original domain. We prove that the curvelet shrinkage can be tuned so that the estimator will attain, for each δ > 0 the MSE O(ǫ), as noise level ǫ → 0. This rate of convergence holds uniformly over a class of functions which are C except for discontinuities along C curves, and (except for the proviso δ > 0) is the minimax rate for that class. Our approach is an instance of a general strategy which should apply in other inverse problems; we sketch a deconvolution example.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Lower Bound Theorem

Motivated by Candes and Donoho′s work (Candés, E J, Donoho, D L, Recovering edges in ill-posed inverse problems: optimality of curvelet frames. Ann. Stat. 30, 784-842 (2002)), this paper is devoted to giving a lower bound of minimax mean square errors for Riesz fractional integration transforms and Bessel transforms.

متن کامل

Ill-Posed and Linear Inverse Problems

In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.

متن کامل

On Level-Set Type Methods for Recovering Piecewise Constant Solutions of Ill-Posed Problems

We propose a regularization method for solving ill-posed problems, under the assumption that the solutions are piecewise constant functions with unknown level sets and unknown level values. A level set framework is established for the inverse problem and a Tikhonov regularization approach is proposed. Existence of generalized minimizers for the Tikhonov functional is proven. Moreover, we establ...

متن کامل

Inverse Problems with Second-order Total Generalized Variation Constraints

Total Generalized Variation (TGV) has recently been introduced as penalty functional for modelling images with edges as well as smooth variations [2]. It can be interpreted as a “sparse” penalization of optimal balancing from the first up to the kth distributional derivative and leads to desirable results when applied to image denoising, i.e., L-fitting with TGV penalty. The present paper studi...

متن کامل

Stability and Error Estimates of BV Solutions to the Abel Inverse Problem

Reconstructing images from ill-posed inverse problems often utilizes total variation regularization in order to recover discontinuities in the data while also removing noise and other artifacts. Total variation regularization has been successful in recovering images for (noisy) Abel transformed data, where object boundaries and data support will lead to sharp edges in the reconstructed image. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000